

OneSAF Test Bed (OTBSAF) Automation

by Ronald D. Anderson and My Van Hoang Baranoski

ARL-TN-0242 May 2005

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

DESTRUCTION NOTICE Destroy this report when it is no longer needed. Do not return it to
the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TN-0242 May 2005

OneSAF Test Bed (OTBSAF) Automation

Ronald D. Anderson and My Van Hoang Baranoski
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

 May 2005
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

 November to December 2004

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 OneSAF Test Bed (OTBSAF) Automation

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

 622618H8011

5e. TASK NUMBER

6. AUTHOR(S)

 Ronald D. Anderson and My Van Hoang Baranoski (both of ARL)

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons and Materials Research Directorate
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TN-0242

10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A method of automating the OTBSAF (OneSAF Test Bed) combat simulation program is described, including source code
additions, installation steps, and a sample run. The programmed stop criteria are based on simulation time and combat vehicle
damage. These new functions allow the program operator to prepare and complete many simulations without constant
monitoring and intervention, thus saving man-hours while a suite of runs necessary to gain required confidence levels of results
is completed. Output information includes a time-sequenced list of vehicle status conditions and the final stop criterion.

15. SUBJECT TERMS

 OneSAF; OTBSAF; semi-automated forces; simulation

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

 Ronald D. Anderson
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

50 19b. TELEPHONE NUMBER (Include area code)

 410-278-6102
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

1. Introduction 1

2. Changes in Source Code – Maximum Run Time Shutoff 2
2.1 Subdirectory src/OTBSAF ..2

3. Changes in Source Code – Shut-off Based on Vehicle Kill Percentage 2
3.1 Subdirectory src/OTBSAF ..2
3.2 Subdirectory libsrc/libentity ..3
3.3 Additional Files ...4

4. Adding Features to OTBSAF Version 1 5
4.1 Subdirectory libsrc/libentity ..5
4.2 Subdirectory src/OTBSAF ...5

5. Summary 6

6. References 7

Appendix A. main.c Code Changes for Maximum Run Time Feature 9

Appendix B. main.h Changes for Maximum Run Time Feature 11

Appendix C. main.c Code Change for Vehicle Kill Percentage Termination 13

Appendix D. main.h Code Changes for Vehicle Kill Percentage Termination 15

Appendix E. libkillstop.h Header File 17

Appendix F. check_list.c Function Source Code 19

Appendix G. print_vehicle_info.c Function Source Code 21

Appendix H. libentity.h Header File Source Code Additions 27

Appendix I. ent_tick.c Source Code Addition 29

iv

Appendix J. Sample VehicleInfo File 31

Appendix K. File GNUmakefile.in 33

Appendix L. Sample Parser File 35

Appendix M. Controller File for OTBSAF Simulations 37

Appendix N. Sample Simulation Output File 39

Distribution List 43

1

1. Introduction

Combat simulation programs often use probabilities to determine results of actions, such as how
much damage will be inflicted upon a vehicle when it is hit by an enemy round or whether an
observer will notice a distant enemy vehicle within a given time period. If the probabilities are
assigned through a random process (or Monte Carlo function), then the outcomes are also
random. The results of such a study are given as probabilities of outcomes within certain
confidence levels. The certainty of a confidence level is determined through many iterations of
the simulation. When a simulation program has no capability for automatic initiation or
termination, the scientist responsible for the statistical analysis is often required to manually start
and monitor the program for each iteration—even when there is no need for human-computer
interaction during the program execution other than initial setup.

The OTBSAF (1) program (OneSAF [semi-automated forces] Test Bed) uses Monte Carlo
methods to determine probabilities of the actions and results of combat. Therefore, a single
combat result is seldom calculated for more than a given percentage of OTBSAF simulations,
even when initial conditions are the same. Many program executions are commonly required to
determine statistical confidence in a result. OTBSAF, however, has no automatic provision for
ending combat simulations; once started, OTBSAF requires the operator to stop the simulation
when s/he judges that some set of termination parameters has been met.

During the simulation, the operator can “save” current conditions into a computer file which may
be used to set up a new simulation at a later time, even the next day or month. When the
conditions are re-loaded, the saved file does the initialization and the operator may then simply
monitor the execution (through the graphical user interface [GUI]) to determine at a later time
when the simulation has progressed enough to determine combat results. Then the same
initialization may be done again and a new calculation may be started, perhaps to end in a
different result some time later. After dozens of restarts, the operator may have enough
statistical results to determine probability of a certain outcome and its confidence level.

Features to allow “unmanned” iterations of OTBSAF were created so that multi-run studies
could be easily accomplished without work stations being constantly attended during the
simulations. The two major features supplied are a maximum run-time value and a method of
stopping execution based on kill levels of vehicles. Both features are user implemented via the
OTBSAF execution statement.

2

2. Changes in Source Code – Maximum Run Time Shutoff

2.1 Subdirectory src/OTBSAF

The main.c code and main.h header (appendices A and B, respectively) are modified to allow an
extra execution line input value at run time. The main.h header file defines the options structure,
and parameters are added with type definitions and default values.

The maximum run time parameter is named “run_duration” and may be added to the execution
line as the option “-run_duration xxx” where the xxx is an integer value of milliseconds to be
compared to internal program time of execution as the run progresses. A call within main.c to
the scheduler subroutine initiates execution of the “main_clean_up” routine at time “xxx”.
When run time is equal to or greater than the entered value, main_clean_up shuts down the
program gracefully, closing necessary files and removing any temporary data stored from the
program execution. Default value of the shut-down time is 0 (zero), which is used to signify that
the program does not schedule a function call to the main_clean_up routine.

The number of milliseconds to enter for stopping a simulation depends upon how long the
operator determines the combatants will require to accomplish the assigned missions. Usually,
the best way to establish this value is to observe an example of the study and note the program
start and end times. Adding 25% to 50% more time for the scenario should give enough time for
most variations to finish.

This function was developed by the OneSAF team at U.S. Armament Research, Development,
and Engineering Center, Picatinny, Arsenal, New Jersey (2).

3. Changes in Source Code – Shut-off Based on Vehicle Kill Percentage

3.1 Subdirectory src/OTBSAF

The parameters that control program shut-down because of damage of vehicles are “bpct,”
“rpct,” “bk_lev,” and “rk_lev”. Again, these are execution line parameters, which are used as in
“-bpct 50,” where the parameter name is always preceded by a “-” sign and the value is
interpreted as an integer. To enter percentage levels of vehicles (blue and red armies,
respectively) killed during the run execution, “bpct” and “rpct” are used. The value “50” stands
for “50%” of combatants killed. When the percentage level of killed vehicles within the
designated army reaches or exceeds the desired percentage, the program will generate a call to
main_clean_up and terminate.

3

Kill levels “bk_lev” and “rk_lev” are used to compare with vehicles as they are checked for
damage. Levels are defined as 1 through 4, where level 4 requires the vehicles to sustain
catastrophic damage in order to be counted killed. Level 3 allows either catastrophic or mobility
and firepower (M&F) damage for counting kills. Level 2 allows any level of damage that
includes firepower impairment to be counted as a kill. Level 1 includes any vehicle whose
damage level is other than “healthy” to be counted as a kill. If “rk_lev” is 3 and “bk_lev” is
zero, then the blue army’s vehicle damage will not be part of the run stop tests, but red army
vehicles suffering catastrophic or M&F kills will be counted. If “rk_lev” is zero and “bk_lev” is
also zero, then no run termination will be done for vehicle damage counts, no matter what values
have been entered for “bpct” and “rpct”. Default values are all 0 (zero).

The changes in OTBSAF source code in the src/OTBSAF directory are in main.c and main.h (see
appendices C and D). As with “run_duration,” the four parameters are defined in the data
structure “main_options_struct” within main.h. Code in main.c copies values from the structure
into like-named parameters within a file libkillstop.h (appendix E) included in the headers for the
main.c routine.

3.2 Subdirectory libsrc/libentity

Two files were written for this directory to look for vehicle kill levels, and both check_list.c and
print_vehicle_info.c (appendices F and G) are defined as externals in the libentity.h (appendix H)
header file. The subroutine ent_tick (in file ent_tick.c; appendix I) calls check_list during
program execution with vehicle identification (ID) values for all known vehicles during the
OTBSAF run. A dynamically linked list of vehicle IDs is built by check_list for comparison as
the OTBSAF run progresses. When a new valid vehicle ID is found, check_list performs two
tasks: it calls sched_periodic_fncl to schedule a once-per-minute entry to print_vehicle_info for
determining vehicle suitability and damage level, and it adds a new node containing the new
vehicle ID to the linked list. Besides individual vehicles, aggregate vehicle formations (platoons,
companies, etc.) also have vehicle IDs sent to print_vehicle_info. To avoid counting these
aggregate entities, the linked list entry is tested for this condition and the function exits before
the status of non-single vehicle IDs is examined.

Subroutine print_vehicle_info is called once per minute per vehicle, so the vehicle status is
evaluated only once each 60 seconds of OTBSAF run time. The print_vehicle_info routine
keeps track of the integer minute value of the system clock during each call; as long as the
minute value remains the same for successive entries, the total number of blue (or red) vehicles
is increased with each call. At each call, if the vehicle is damaged, at least “bk_lev” (or
“rk_lev”) an additional killed vehicle counter is increased. At the first instance when the minute
value does not match the previous value, we determine a percentage of army kill by multiplying
the counted kills by 100 and dividing by the total number of blue or red army vehicles. The
result is compared to “bpct” or “rpct” to test whether to stop the OTBSAF run. If the killed
percentage is too low, the vehicle and kill counts are set to 0 (zero) and counting begins again for

4

the current minute. If the damaged vehicle percentage matches or exceeds the “bpct” or “rpct”
value, then print_vehicle_info initiates a call to the main_clean_up routine to stop the simulation.

Subroutine print_vehicle_info also writes current vehicle and kill counts into a local file called
“VehicleInfo” (example in appendix J) during each damage test. If this file is not removed after
the OTBSAF run stops, new information from subsequent run(s) will be appended.

A header file called libkillstop.h in the libsrc/libentity directory is used to define the four kill-
related values to print_vehicle_info.c (and to main.c from the src/OTBSAF directory). The
header file needs to be copied to the include/libinc directory so it can be accessed by both the
main and print_vehicle_info object files during program linking; we do this by defining
libkillstop.h as a header in the GNUmakefile.in source code (printed in appendix K) and in its
derivative GNUmakefile. Also, check_list.o and print_vehicle_info.o are added to the list of
object files in the GNUmakefile.in coding.

3.3 Additional Files

In order to manage automated simulations, two files are needed for program initiation and
execution. The first file is a controller containing execution statements and pertinent execution
line parameters. A sample execution line may look like this:

 ./otbsaf –nonet –run_duration 300000 –rpct 75 –rk_lev 3 –parser –sourcefile ./inpt

In this situation, the maximum run time is set at 5 minutes (300,000 milliseconds), and a stop
feature is set for red vehicles reaching a 75% kill percentage (kill at level 3 is defined as either
catastrophic damage or a combination of M&F damage). The program takes its initial setup via
information parsed from a second file (here called “./inpt”) containing OTBSAF commands to
reference a pre-stored scenario of starting positions for vehicles and other OTBSAF objects. The
input might be:

 scenario load RDA.1.gz

in which scenario RDA.1 is the name of the scenario and the information is stored in an archived
file which the program calls by its full name “RDA.1.gz” in order to initialize the simulation.
The scenario should also contain vehicle mission data, since the operator will not be able to enter
commands during an unattended run. Other commands may also be given in this file, such as

 run 2.0 0

which directs the program to run at twice the normal execution speed. An example of a parser
information file is printed in appendix L.

5

To run OTBSAF in background, one should use the Unix1 “at” command to schedule a run (or a
series of runs) at a later time. Using the “&” to put an OTBSAF run in current background
execution does not work well, as the program may hang up during initialization.

4. Adding Features to OTBSAF Version 1

Although only two subdirectories receive new source code, several other OTBSAF locations are
changed at compilation time. The steps necessary to properly add the features include the
following.

4.1 Subdirectory libsrc/libentity

Insert the new source code containing definitions of the external object codes check_list.o and
print_vehicle_info.o into libentity.h so that compiled code can reference them.

In ent_tick.c, add the new code calling check_list with vehicle ID numbers during simulation
execution.

Add check_list.c, print_vehicle_info.c, and libkillstop.h as completely new files.

In GNUmakefile and GNUmakefile.in, add the code referencing the new object files and header
file.

Execute a “gmake clean,” then “gmake all” in the libentity directory to recompile all source code
and to copy the new header files into the include/libinc directory. If compiling finishes without
error, the new object codes will be archived as libentity.a into the lib subdirectory.

4.2 Subdirectory src/OTBSAF

Insert new source code into main.c and main.h containing definitions of the new parameters and
entering values for them into the libkillstop.h header variables.

Execute “gmake otbsaf” to create the main.o object file and link it to all the other object files
from the lib subdirectory.

Use otbsaf for an interactive simulation, or add the execution line parameters to create a halt to
execution when run time reaches a maximum value or when vehicle kill percentages reach a
prescribed limit.

Create a batch run file to automatically start and stop non-interactive simulations, such as the
script doit in appendix M. In this example, a file named inpt contains information defining the

1Unix is a trademark of Bell Laboratories.

6

scenario to be loaded. Examples of output files from an OTBSAF simulation are in file out1 and
VehicleInfo1 (appendices N and J, respectively); the looping feature in the controller file causes
output and VehicleInfo file names to have the final digit increased with each simulation. Note
out1 lists all the execution line input, including values for kill percentages and levels and for a
maximum run time limit.

5. Summary

The additional features allow multiple OTBSAF simulations without user intervention. Output
files may be scanned to determine combat results and statistical information from the automatic
simulations.

Using the vehicle kill percentage method to stop simulations should also require a run time
termination value, since it cannot be guaranteed that the desired percentage of vehicles will be
killed (or damaged) before combatants pass each other in terrain or before all available
ammunition is expended.

7

6. References

1. OTBSAF, Version 1, Lockheed Martin Information Systems, Martin Marietta Technologies,
Inc., 12506 Lake Underhill Road, Orlando FL, under STRICOM Advanced Distributed
Simulation II Contract Number N61339-96-D-0002, Delivery Order 97, September 1998.

2. Matyola, Maryann. OTBReflector Communication; AMSTA-AR-FS-H; U.S. ARDEC:
Picatinny Arsenal, NJ, 3 January 2003.

8

INTENTIONALLY LEFT BLANK

9

Appendix A. main.c Code Changes for Maximum Run Time Feature

.

.

.
PARSE_TABLE *main_table_ptr;

struct main_options_struct main_options = {
 /* start of new code */
 {
 "Run Duration", "Specifies the length of OTB run in milliseconds",
 NULL, CMD_INTEGER, "run_duration", NULL, 0, 0
 },
 /* end of new code */
.
.
.
int main(
 int argc,
 argv_t argv)
{
 int status = main_init(argc, argv);

 /* start of new code */
 if (main_options.run_duration.value)
 sched_deferred_fncl((SCHED_FUNCTION)main_clean_up,
 main_options.run_duration.value, 0, A_END);
 /* end of new code */
.
.
.

10

INTENTIONALLY LEFT BLANK

11

Appendix B. main.h Changes for Maximum Run Time Feature

.

.

.
extern struct main_options_struct
{
CMD_INTEGER_OPTION run_duration; /* new code */
#ifdef USE_MOTIF
 CMD_TOGGLE_OPTION gui;
 CMD_TOGGLE_OPTION guiwarnings;
.
.
.

12

INTENTIONALLY LEFT BLANK

13

Appendix C. main.c Code Change for Vehicle Kill Percentage Termination

.

.

.
#include <libvterrain.h>
#include <libkillstop.h> /* new code */
.
.
.
struct main_options_struct main_options = {
 /* start of new code */
 {
 "Blue Kill Percentage","Specifies percent of blue vehicles killed for run
stoppage",
 NULL, CMD_INTEGER, "bpct", NULL, 0, 0
 },
 {
 "Red Kill Percentage","Specifies percent of red vehicles killed for run
stoppage",
 NULL, CMD_INTEGER, "rpct", NULL, 0, 0
 },
 {
 "Blue Kill Level","Specifies level of kill for blue vehicles for run
stoppage",
 NULL, CMD_INTEGER, "bk_lev", NULL, 0, 0
 },
 {
 "Red Kill Level","Specifies level of kill for red vehicles for run
stoppage",
 NULL, CMD_INTEGER, "rk_lev", NULL, 0, 0
 },
 /* end of new code */
.
.
.
int main(
 int argc,
 argv_t argv)
{
 int status = main_init(argc, argv);
.
.
.
 if (status)
 return status;

 rpct = main_options.rpct.value; /* new code */
 bpct = main_options.bpct.value; /* new code */
 bk_lev = main_options.bk_lev.value; /* new code */
 rk_lev = main_options.rk_lev.value; /* new code */
.
.
.

14

INTENTIONALLY LEFT BLANK

15

Appendix D. main.h Code Changes for Vehicle Kill Percentage Termination

.

.

.
extern struct main_options_struct
{
CMD_INTEGER_OPTION bpct; /* new code */
CMD_INTEGER_OPTION rpct; /* new code */
CMD_INTEGER_OPTION bk_lev; /* new code */
CMD_INTEGER_OPTION rk_lev; /* new code */
.
.
.

16

INTENTIONALLY LEFT BLANK

17

Appendix E. libkillstop.h Header File

/* libkillstop.h */

/* header to hold values for determining whether to stop computation */
/* because of percentage killed vehicles (red or blue) */

 int32 bpct,
 rpct,
 bk_lev,
 rk_lev;

/* bpct = cutoff percentage when blue kills reach this level */
/* rpct = cutoff percentage when red kills reach this level */
/* bk_lev = definition of blue kill */
/* 1 = kill when at least mobility is disabled */
/* 2 = kill when at least firepower is disabled */
/* 3 = kill when at least mobility and firepower are disabled*/
/* 4 = kill when catastrophic damage */
/* rk_lev = definition of red kill */

18

INTENTIONALLY LEFT BLANK

19

Appendix F. check_list.c Function Source Code

#include "libent_local.h"
#include <stdlib.h>
#include <libsched.h>
/* #include <liblocale.h> */
#include <stdext.h>
#include <libclass.h>
#include <libtime.h>

/* Structure for the nodes of the dynamically linked list */
typedef struct list_node {
 ForceID my_force;
 VehicleMarking my_marking;
 struct list_node *link;
}List_Node;

typedef List_Node *list_pointer;

void check_list (int32 vehicle_id)
{
 int32 found_marking = 0;
 VehicleMarking marking;
 ForceID force;
 static list_pointer my_list = NULL;
 list_pointer newNodePtr = NULL;
 list_pointer currPtr = NULL;
 list_pointer checklist = my_list;
 ent_get_marking(vehicle_id,&marking);
 force = ent_get_force_id(vehicle_id);

 if (checklist) // if the list is not empty
 {
 found_marking = 0;
 while (checklist != NULL)
 {
 if (strcmp(marking.text,checklist->my_marking.text) == 0)
 {
 if (force == checklist->my_force)
 {
 found_marking = 1;
 break;
 }
 }
 currPtr = checklist;
 checklist = checklist->link;
 }
 if (found_marking != 1)
 {

 sched_periodic_fncl(print_vehicle_info,time_last_simulation_clock+5000,
60000,747,A_INT,vehicle_id,A_END);
 newNodePtr = (list_pointer)malloc(sizeof(List_Node));

20

 newNodePtr->my_force = force;
 newNodePtr->my_marking = marking;
 newNodePtr->link = NULL;
 currPtr->link = newNodePtr;
 }
 }
 else // if the list IS empty
 {

sched_periodic_fncl(print_vehicle_info,time_last_simulation_clock+5000,60000,
747,A_INT,vehicle_id,A_END);
 my_list = (list_pointer)malloc(sizeof(List_Node));
 my_list->my_force = force;
 my_list->my_marking = marking;
 my_list->link = NULL;
 }
}

21

Appendix G. print_vehicle_info.c Function Source Code

#include <stdext.h>
#include <libkillstop.h>
#include "libent_local.h"
#include <veh_appear.h>
/* #include <liblocale.h> */
#include <libclass.h>
#include <libtime.h>
#include <libcoordinates.h>
#include <sys/time.h>
#include <string.h>

int32 print_vehicle_info(int32 Vehicle_ID)
{
 static FILE *OutFile;
 static int32 OpenFile = 0;
 char result[20],
 appearance_string[20],
 color_string[10];
 uint32 appearance;
 ForceID force;
 VehicleMarking marking;
 static int32 tmpr_blue = 0,
 tmpr_red = 0,
 num_blue = 0,
 num_red = 0,
 nbk = 0,
 nrk = 0;
 int32 i = 0,
 heading_degrees,
 cell;
 float64 pos[XYZC],
 pitch,
 roll,
 speed = 0,
 heading,
 lt,
 ln,
 z;
 time_t timep;
 struct tm tmm;
 struct timeval tv;
 struct timezone tz;

 if (!bk_lev && !rk_lev)
 return 0;

 if (OpenFile == 0)
 {
 OutFile = fopen("VehicleInfo","a");

22

/*
fprintf(OutFile,"Color\tURN\tTime\tPosition\tAlt\tSpeed\tHeading\tAppearance\
n"); */

fprintf(OutFile,"Color\tURN\tTime\tAppearance\tNB\tNBK\tNR\tNRK\n");
 OpenFile = 1;
 }

 ent_get_marking(Vehicle_ID,&marking); // Get vehicle's marking
/* if this is not an individual vehicle (i.e., platoon or larger),
return */
 if (strlen(marking.text) < 6)
 {
/* fprintf(OutFile,"%s\t",marking.text); */
 return 0;
 }
 if (strchr(marking.text,32) != NULL)
 {
/* fprintf(OutFile,”%s contains blank\n”,marking.text); */
 return 0;
 {

 gettimeofday(&tv,&tz);
 timep = tv.tv_sec;
 tmm = *gmtime(&timep);
 force = ent_get_force_id (Vehicle_ID);

 if (force == distinguishedForceID && bk_lev > 0)
 {
 sprintf(color_string,"Blue");
 if (tmpr_blue != tmm.tm_min)
 {
 if (num_blue)
 if ((100*nbk)/num_blue + 1 > bpct)
 {
 fprintf(OutFile,"\n Stop Blue\n\n");
 main_clean_up();
 }
 num_blue = 0;
 nbk = 0;
 }
 tmpr_blue = tmm.tm_min;
 num_blue = num_blue + 1;

 appearance = ent_get_appearance (Vehicle_ID);
 if (appearance & (vehDestroyed | vehFlaming))
 {
 strcpy (appearance_string, "K kill");
 nbk = nbk + 1;
 }
 else if ((appearance & vehFirepowerDisabled) &&
 (appearance & vehMobilityDisabled))
 {
 strcpy (appearance_string, "FM kill");
 if (bk_lev < 4)
 nbk = nbk + 1;
 }

23

 else if (appearance & vehFirepowerDisabled)
 {
 strcpy (appearance_string, "Fpr kill");
 if (bk_lev < 3)
 nbk = nbk + 1;
 }
 else if (appearance & vehMobilityDisabled)
 {
 strcpy (appearance_string, "Mbl kill");
 if (bk_lev == 1)
 nbk = nbk + 1;
 }
 else
 {
 strcpy (appearance_string, "Healthy");
 }

 }
 else if (force == otherForceID && rk_lev > 0)
 {
 sprintf(color_string,"Red");
 if (tmpr_red != tmm.tm_min)
 {
 if (num_red)
 if ((100*nrk)/num_red + 1 > rpct)
 {
 fprintf(OutFile,"\n Stop Red\n\n");
 main_clean_up();
 }
 num_red = 0;
 nrk = 0;
 }
 tmpr_red = tmm.tm_min;
 num_red = num_red + 1;

 appearance = ent_get_appearance (Vehicle_ID);
 if (appearance & (vehDestroyed | vehFlaming))
 {
 strcpy (appearance_string, "K kill");
 nrk = nrk + 1;
 }
 else if ((appearance & vehFirepowerDisabled) &&
 (appearance & vehMobilityDisabled))
 {
 strcpy (appearance_string, "FM kill");
 if (rk_lev < 4)
 nrk = nrk + 1;
 }
 else if (appearance & vehFirepowerDisabled)
 {
 strcpy (appearance_string, "Fpr kill");
 if (rk_lev < 3)
 nrk = nrk + 1;
 }
 else if (appearance & vehMobilityDisabled)
 {
 strcpy (appearance_string, "Mbl kill");

24

 if (rk_lev == 1)
 nrk = nrk + 1;
 }
 else
 {
 strcpy (appearance_string, "Healthy");
 }

 }
 else if (force == neutralForceID)
 sprintf(color_string,"Green");
 else
 sprintf(color_string,"Black");

/* ent_get_position_gcs (Vehicle_ID, pos); // Get vehicle's position//
*/
/* if (!coord_convert (COORD_GCS, (int32) pos[CELL3D], pos[X], pos[Y],
0.0, COORD_LATLON, <, &ln, &z, TRUE)) */
/* strcpy (result, coord_format_latlon (lt, ln)); */
/* else */
/* strcpy (result, "?"); */
/* */
/* ent_get_orientation_gcscs (Vehicle_ID, cell, &heading, &pitch,
&roll); // Get vehicle's orientation in radians */
/* heading_degrees = (int32) RAD_TO_DEG (heading); // Convert
vehicle's orientation from radians to degrees */
/* if (heading_degrees < 0) */
/* { */
/* heading_degrees += 360; */
/* } */
/* speed = ent_get_speed (Vehicle_ID); // Get vehicle's speed */

 if (ent_is_ic (Vehicle_ID))
 {
 sprintf (appearance_string, "%s (%s)", appearance_string,
 (appearance & lfPositionMask) == lfPositionProne ? "Prone" :
 (appearance & lfPositionMask) == lfPositionCrawling ? "Crawling" :
 (appearance & lfPositionMask) == lfPositionSitting ? "Sitting" :
 (appearance & lfPositionMask) == lfPositionCrouching ? "Crouching"
:
 (appearance & lfPositionMask) == lfPositionKneeling ? "Kneeling" :
 (appearance & lfPositionMask) == lfPositionStanding ? "Standing" :
 (appearance & lfPositionMask) == lfPositionWalking ? "Walking" :
 (appearance & lfPositionMask) == lfPositionRunning ? "Running" :
 "Other");
 }

 fprintf(OutFile,"%s\t",color_string);
 fprintf(OutFile,"%s\t",marking.text);
/* fprintf(OutFile,"%s\t",ctime(&timep)); */
/* fprintf(OutFile,"%s\t",result); */
/* fprintf(OutFile,"%.3f\t",ent_get_altitude_agl(Vehicle_ID));*/
/* fprintf(OutFile,"%.3f\t",speed); */
/* fprintf(OutFile,"%d\t",heading_degrees); */
 fprintf(OutFile,"%d\t",tmm.tm_min);
 fprintf(OutFile,"%s\t\t",appearance_string);
 fprintf(OutFile,"%d\t",num_blue);

25

 fprintf(OutFile,"%d\t",nbk);
 fprintf(OutFile,"%d\t",num_red);
 fprintf(OutFile,"%d\n",nrk);
 return 0;
}

26

INTENTIONALLY LEFT BLANK

27

Appendix H. libentity.h Header File Source Code Additions

.

.

.
/**
 ** Functions relating to global libentity operation
 **
 **/

extern void check_list (int32 vehicle_id); /* new code */
extern int32 print_vehicle_info(int32 Vehicle_ID); /* new code */
.
.
.

28

INTENTIONALLY LEFT BLANK

29

Appendix I. ent_tick.c Source Code Addition

.

.

.
 /* Return if tick is suspended */
 if(ent->suspend_tick)
 return;

 check_list (vehicle_id); /* new code */

 if (!(IS_AGGREGATE(ent)))
 {
.
.
.

30

INTENTIONALLY LEFT BLANK

31

Appendix J. Sample VehicleInfo File

Color URN Time Appearance NB NBK NR NRK
Blue 100A11 3 Healthy 1 0 0 0
Blue 100A12 3 Healthy 2 0 0 0
Blue 100A13 3 Healthy 3 0 0 0
Blue 100A14 3 Healthy 4 0 0 0
Red 100A11 3 Healthy 4 0 1 0
Red 100A12 3 Healthy 4 0 2 0
Red 100A13 3 Healthy 4 0 3 0
Blue 100A11 4 Healthy 1 0 3 0
Red 100A13 4 Healthy 1 0 1 0
Red 100A12 4 Healthy 1 0 2 0
Blue 100A13 4 Healthy 2 0 2 0
Red 100A11 4 Healthy 2 0 3 0
Blue 100A12 4 Healthy 3 0 3 0
Blue 100A14 4 Healthy 4 0 3 0
Blue 100A11 5 Healthy 1 0 3 0
Blue 100A14 5 Healthy 2 0 3 0
Red 100A13 5 Healthy 2 0 1 0
Blue 100A12 5 Healthy 3 0 1 0
Red 100A11 5 Healthy 3 0 2 0
Red 100A12 5 Healthy 3 0 3 0
Blue 100A13 5 Healthy 4 0 3 0
Blue 100A11 6 Healthy 1 0 3 0
Blue 100A13 6 Healthy 2 0 3 0
Red 100A12 6 Healthy 2 0 1 0
Blue 100A14 6 Healthy 3 0 1 0
Red 100A11 6 Healthy 3 0 2 0
Red 100A13 6 Healthy 3 0 3 0
Blue 100A12 6 Healthy 4 0 3 0
Blue 100A11 7 Healthy 1 0 3 0
Red 100A13 7 Healthy 1 0 1 0
Blue 100A12 7 Healthy 2 0 1 0
Blue 100A13 7 Healthy 3 0 1 0
Red 100A11 7 K kill 3 0 2 1
Red 100A12 7 K kill 3 0 3 2
Blue 100A14 7 Healthy 4 0 3 2
Blue 100A11 8 Healthy 1 0 3 2
Blue 100A14 8 Healthy 2 0 3 2

 Stop Red

32

INTENTIONALLY LEFT BLANK

33

Appendix K. File GNUmakefile.in

srcdir=@srcdir@
COMPRESS_DATA=@COMPRESS_DATA@
GZIP=@GZIP@
VPATH=@srcdir@
top_srcdir=@top_srcdir@
CC=@CC@
CXX=@CXX@
CPPFLAGS=@CPPFLAGS@
CFLAGS=@CFLAGS@
CXXFLAGS=@CXXFLAGS@
AR=@AR@
ARFLAGS=@ARFLAGS@
CXX_AR=@CXX_AR@
CXX_ARFLAGS=@CXX_ARFLAGS@
RANLIB=@RANLIB@
RLFLAGS=@RLFLAGS@
LDFLAGS=@LDFLAGS@
LIBS=@LIBS@
JREDIR=@JREDIR@
JREHOME=@JREHOME@
JAVAC=@JAVAC@
JAVAH=@JAVAH@
JAVACFLAGS=@JAVACFLAGS@
JAVAHFLAGS=@JAVAHFLAGS@
JAVAIFLAGS=@JAVAIFLAGS@
JAVACLASSES=@JAVACLASSES@
JAVA_SAF=@JAVA_SAF@

targetroot=@targetroot@
toolsbindir=@toolsbindir@

OBJECTS = \
ent_wrapper.o \
ent_class.o \
ent_coord.o \
ent_depend.o \
ent_init.o \
ent_params.o \
ent_pdus.o \
ent_rva.o \
check_list.o \
print_vehicle_info.o \
ent_tick.o \
ent_update.o \
ent_set.o \
ent_get.o \
ent_event.o

LIBNAME = entity
HEADERS = libentity.h libkillstop.h

34

LOCAL_HEADERS = libent_local.h
SAF_MODEL = SM_Entity
PROTO_PREFIX = ENTITY
TYPES = ent.tdl
EXTRA_CLEAN_FILES = ent.tdl

READERS = \
ent_artics.rdr \
ent_timers.rdr

FUNCTION_PREFIX = ent_

JAVA_WRAPPERS = EntityWrapper.java

include $(top_srcdir)/makeinclude/make.librules

35

Appendix L. Sample Parser File

scenario load rda4.1.gz
run 1.0 0

36

INTENTIONALLY LEFT BLANK

37

Appendix M. Controller File for OTBSAF Simulations

cd /g1/wab/andy/OTB.Feb03/src/OTBSAF

HERE=`pwd`
echo $HERE
for i in 1 2 3
do

 $HERE/otbsaf -nogui -nonet -parser -sourcefile $HERE/parsefile.in -
run_duration 720000 -bpct 50 -rpct 50 -bk_lev 3 -rk_lev 3 >$HERE/outs/out$i
 echo >> $HERE/outs/out$i
 echo >> $HERE/outs/out$i " otbsaf run$i ended " >>$HERE/outs/out$i
 echo >> $HERE/outs/out$i
 mv VehicleInfo $HERE/outs/VehicleInfo$i

done

38

INTENTIONALLY LEFT BLANK

39

Appendix N. Sample Simulation Output File

OTBSAF OTBSAF Version 1.0
Process ID: 29040
OTBSAF built on gawain.arl.army.mil - (Linux 2.4.21-27.0.1.EL) at Tue Jan 11
13:00:32 EST 2005 by andy

 Network: Off
 Packet Tee Port: 0
 Synchronous UDP: True
 DIS: True
 DIS Version: 4
 DIS UDP Port: 3000
 Bundle DIS PDUs: False
 Multicast TTL: 32
 Unicast Address: (null)
 Articulation Dead Reckoning: False
 Simulation Address Override: 0 0
 Send Stealth ESPDUs: False
 Pktvalve Buffer Pool Size: 8192
 Body Centroid: False
 Terrain Database: knox-0311
 TDB Directory: ../../terrain
 GCS Cell: none
 TDB Memory: 10
 TDB Integrity Check: True
 Blue Kill Percentage: 50
 Red Kill Percentage: 50
 Blue Kill Level: 3
 Red Kill Level: 3
 Run Duration: 720000
 GUI: Off
 GUI warnings: Off
 Activate: Off
 Simulate: On
 PO Send Enabled: True
 Database ID: 1
 Monitor log directory: ../../logs/monitor
 Benchmark: 0
 Zoom Benchmark: Off
 Default Competence: 0.500000
 Vulnerability Modifier: 1.000000
 Stealth Previews: 0
 Multicast Agent: False
 Absolute Timestamps: False
 Trust Timestamps: False
 Vehicle Loading Factor: 0.010000
 Views Directory: ../../views
 View file: (null)
 Template Directory: ../../templates
 Template file: (null)
 Standard Load Directory: ../../stdloads

40

 Data Directory: ../../data
 Shared Object Directory: ../../lib
 Dump scheduler information: False
 Oversize Cursor: On
 Use RouteMap: True
 Memory Monitor: Off
 Use ModStealth Protocol: True
 Use Parser: True
 Use sourcefile:
/g1/wab/andy/OTB.Feb03/src/OTBSAF/parsefile.in
 Send StatusChange PDUs: False
 Send TgtAcq VVA PDUs: False
 Send DelAcc VVA PDUs: False
 Send DfDam VVA PDUs: False
 Send IfDam VVA PDUs: False
 MKill cants vehicle: True
 FKill droops gun: True
 Best Matching Ammo: True
 Detect floating point exception: False
 Relative Battle Scheme: Off
 Modify Competence: True
 Force non-constant environment: False
 Disable dust behavior: True
 Enable phenomenology behavior: True
 Enable environmental mobility: False
 Environmental Weather Simulator: False
 Environmental Sea State Simulator: False
 Gridded Weather Simulator: False
 Environmental Statistics: False
 Smoke Cloud Representation: 2
 Environment Demo Mode: False
 Dynamic Terrain Operations: False
 DT Simulator: False
 DT Scribe: False
 Scribe Backup File Path: ../../logs
 Scribe Backup File: scribe[exercise_id]
 Use of Existing Scribe Backup File: discard
 New Subscriber initial pause: 1000
 New Subscriber burst pause: 1
 Mines Orientation Present: False
 Mines Burial Depth Present: False
 Mines Temperature Present: False
 Enable AF model: False
 ASPDU: On
 Migration: On
 Network Monitor Interval: -1
 Network Monitor Address: fff.fff.fff.fff
 Simple IFF: False
 Supply Consumption: False
 Random Failures: False
 Send Alerts: False
 Thinned TDB Switching Zoom Level: 50000
 Draw MES Distinctly: False
 Open Agent Architecture (Command Talk): Off
 Open Agent Host: localhost
 Open Agent Port: 6666
 Open Agent Server Type: True

41

 Use Ordnance Server: False
 Print Extended Version/Build Info: False
 Stow Units Only: False
 Block Sending of Emissions PDUs: none
 KKill detonation: False
 Terrain has contamination: False
 Test Procedures: (null)
 Random Seed: 0
 Enable Async Time: False
 Repeatable Mode: False
 RWA Model high fidelity: True
 Enable building bounding box bundling: False
 Load Scenario: Off
 Checkpoint Exercise: Off
 Iconify ModSAF GUI: Off

Reading terrain: knox-0311...

Database Knox-0311 created Wed Dec 18 11:18:08 1996

Terrain Format 7 with the following features:
UTM flat, MIXED TIN & GRID POST,

Grid Spacing (METERS): 125
Fixed point basis : 0.01907349
Origin at 4155000N 545000E in UTM zone 16S (datum WGS84)
Minimum (SW Corner)(X,Y) : (0.00, 0.00)
Maximum (NE Corner)(X,Y) : (75000.00, 50000.00)
Minimum Elevation : (0.00)
Maximum Elevation : (306.99)

2729 nodes (86KB), 3440 edges (189KB), 33962 abstract data (133KB)

Successfully read 1 cell.

Loading precomputed routemap file ../../terrain/knox-0311.rnl...
done.
Using a default of site:29040 host:5303.
Pktvalve allocating a pool size of 8192 buffers
Environment: Skipping environment.rdr.
 (No initialized models will be ignored.)
Reading indirect fire delivery accuracy file "cmbt_ifdata.rdr"...
Reading indirect-fire ICM file "ifdam_icm.rdr"...
Reading indirect-fire HE file "ifdam_he.rdr"...
Reading indirect-fire damage in "ifdam.rdr"...
Max cutoff for indirect fire detonations is 300 meters.
Using data in physdb for inherent contrast.
Reading protocol conversion rules...

Reading model configuration files from ../../data/entities/modellist.rdr...
..
..
..
...
Successfully read 281 of 281 model configuration files!

Reading dtoconst.rdr from ../../data

42

Initializing DTAgent for CTDB
Warning: DTSim failed to read d3b database file
Running in normal time mode.
Warning: Failed to initialize libmso.
Warning: Cultural Features will NOT be sensed.
OTBSAF @ GAWAIN> Sourcing file
/g1/wab/andy/OTB.Feb03/src/OTBSAF/parsefile.in...
1:scenario load rda4.1.gz
Reading scenario file
Loading Scenario
Loading portable scenario:
 Created: "GAWAIN"
 SAF Version: "OTBSAF OTBSAF Version 1.0"
Loading module SM_URadarSectors
Loading module SM_UReactObst
Loading module SM_UReactIF
Loading module SM_UReactSmoke
Loading module SM_UReactAir
Loading module SM_VReceiveRepair
Loading module SM_VReceive
Loading module SM_VCollide
Loading module SM_VOPReactAir
Loading module SM_VMMCM
 Total Objects: 283
 Processed: 283
 Damaged: 0
 Corrected: 0
 Created: 283
OTBSAF @ GAWAIN>
2:run 1.0 0
Running in real time
OTBSAF @ GAWAIN...finished sourcing file
/g1/wab/andy/OTB.Feb03/src/OTBSAF/parsefile.in.

OTBSAF @ GAWAIN> Reading direct fire damage mapping file
"dfdam_mf_M1A2.rdr"...
Will cache Fire PDUs for damage from "munition_US_MX943_submun"
Reading mine damage file "dfdam_M1_mines.rdr"...
Reading direct fire delivery accuracy file "bgun_2A001.rdr"...
Reading direct fire delivery accuracy file "bgun_2A002.rdr"...
Reading direct fire delivery accuracy file "bgun_2A004.rdr"...
Reading direct fire delivery accuracy file "bgun_AGL.rdr"...
Reading direct fire delivery accuracy file "bgun_AGL.rdr"...
Reading direct fire delivery accuracy file "bgun_AGL.rdr"...
Reading direct fire delivery accuracy file "bgun_AGL.rdr"...
Reading direct fire delivery accuracy file "bgun_2A004.rdr"...
Reading direct fire damage mapping file "dfdam_mf_T72M.rdr"...
Reading mine damage file "dfdam_USSR_T72_mines.rdr"...
Reading direct fire delivery accuracy file "bgun_3A002.rdr"...
Reading direct fire delivery accuracy file "bgun_3A003.rdr"...
Reading direct fire delivery accuracy file "bgun_3A006.rdr"...
Reading direct fire delivery accuracy file "bgun_3A005.rdr"...

 otbsaf run1 ended

43

NO. OF
COPIES ORGANIZATION

 * ADMINISTRATOR
 DEFENSE TECHNICAL INFO CTR
 ATTN DTIC OCA
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218
 *pdf file only

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN IMNE ALC IMS MAIL & REC MGMT
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI OK TL TECH LIB
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIR OF COMBAT DEVELOPMENT
 ATTN ATZK FD W MEINSHAUSEN
 BLDG 1002 ROOM 326
 1ST CAVALRY DIV RD
 FT KNOX KY 40121-9142

 1 CDR US TACOM-ARDEC
 ATTN AMSTA AR FSS J WALSH
 PICATINNY ARSENAL NJ 07806-5000

 1 TECHNOLOGY SVC ASSOC INC
 ATTN JON NIDA
 3361 ROUSE RD STE 240
 ORLANDO FL 32817

 2 CDR TRADOC
 ATTN ATINZA R REUSS
 ATIN I C GREEN
 BLDG 133
 FT MONROE VA 23651

 1 OFC OF THE SECY OF DEFENSE
 CTR FOR COUNTERMEASURES
 ATTN M A SCHUCK
 WHITE SANDS MISSILE RANGE NM 88002-5519

 2 CDR US ARMY ARMOR CTR & FT KNOX
 ATTN TSM/ABRAMS COL D SZYDLOSKI
 DIR UAMBL COL J HUGHES
 FORT KNOX KY 40121

 2 CDR US TACOM-ARDEC
 ATTN AMSTA AR TD J HEDDERICK
 B MADECK
 PICATINNY ARSENAL NJ 07806-5000

NO. OF
COPIES ORGANIZATION

 3 CDR US TACOM-ARDEC
 ATTN AMSTA AR FSP G A PEZZANO
 R SHORR
 AMSTA AR FSP I R COLLETT
 PICATINNY ARSENAL NJ 07806-5000

 3 CDR US TACOM-ARDEC
 ATTN AMSTA AR CCH A M PALTHINGAL
 E LOGSDON M YOUNG
 PICATINNY ARSENAL NJ 07806-5000

 1 US MILITARY ACADEMY
 MATH SCIENCES CTR OF EXC
 ATTN MDN MATH LTC LAMBERT
 THAYER HALL
 WEST POINT NY 10996-1786

 1 CDR US ARMY MMBL
 ATTN MAJ J BURNS
 BLDG 2021
 BLACKHORSE REGIMENT DR
 FT KNOX KY 40121

 1 CDR ARMY RSCH OFC
 4300 S MIAMI BLVD
 RSCH TRIANGLE PK NC 27709

 1 CDR US ARMY PEO STRI
 ATTN J STAHL
 12350 RSCH PKWAY
 ORLANDO FL 32826-3726

 1 CDR US ARMY TRADOC
 BATTLE LAB INTEGRATION 7 TECH DIR
 ATTN ATCD B J A KLEVECZ
 FT MONROE VA 23651-5850

 1 OFC OF THE PROJECT MGR
 MANEUVER AMMUNITION SYSTEMS
 ATTN S BARRIERES
 BLDG 354
 PICATINNY ARSENAL NJ 07806-5000

 1 CDR US ARMY TRADOC ANALYSIS CTR
 ATTN ATRC WBA J GALLOWAY
 WHITE SANDS MISSILE RANGE NM 88002

 1 CDR USAAMC
 DEPUTY G3 CURRENT OPERATIONS
 ATTN N BIAMON
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001

44

NO. OF
COPIES ORGANIZATION

 1 CDR USAARDEC
 ATTN AMSRD AAR AE COL P JANKER
 BLDG 94
 PICATINNY NJ 07806-5000

 1 PEO SOLDIER
 ATTN C TAMEZ
 5901 PUTNAM ROAD
 BLDG 328
 FT BELVOIR VA 22060-5422

 ABERDEEN PROVING GROUND

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI OK (TECH LIB)
 BLDG 4600

 2 CDR US ARMY TECOM
 ATTN AMSTE CD B SIMMONS
 AMSTE CD M R COZBY
 RYAN BLDG

 4 DIR US AMSAA
 ATTN AMXSY D D SHAEFFER
 W BROOKS
 AMXSY CA G DRAKE/S FRANKLIN
 BLDG 327

 1 CDR US ATC
 ATTN CSTE AEC COL BROWN
 BLDG 400

 2 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM J SMITH
 T ROSENBERGER
 BLDG 4600

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM B J MORRIS
 BLDG 4600

 2 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM BA D LYONS
 AMSRD ARL WM BD B FORCH
 BLDG 4600

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM BC P PLOSTINS
 BLDG 390

NO. OF
COPIES ORGANIZATION

 7 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM BF
 R ANDERSON P BUTLER
 M BARANOSKI W OBERLE
 C PATTERSON J WALL
 S WILKERSON
 BLDG 390

 5 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM B VANLANDINGHAM
 AMSRD ARL WM MB DOWDING
 AMSRD ARL WM MC M MAHER
 AMSRD ARL WM MD W ROY
 AMSRD ARL WM MA S MCKNIGHT
 BLDG 4600

 3 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM T P BAKER
 AMSRD ARL WM TC R COATES
 AMSRD ARL WM TB R SKAGGS
 BLDG 309

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM TD SCHOENFELD
 BLDG 4600

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM TE B RINGERS
 BLDG 1116A

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM T M ZOLTOSKI
 BLDG 393

